Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(12): 2189-2199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945900

RESUMO

Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias , Humanos , DNA Circular , Meduloblastoma/genética , Estudos Retrospectivos , Neoplasias/genética , Oncogenes , Neoplasias Cerebelares/genética
2.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503111

RESUMO

The chromosomal theory of inheritance has dominated human genetics, including cancer genetics. Genes on the same chromosome segregate together while genes on different chromosomes assort independently, providing a fundamental tenet of Mendelian inheritance. Extrachromosomal DNA (ecDNA) is a frequent event in cancer that drives oncogene amplification, dysregulated gene expression and intratumoral heterogeneity, including through random segregation during cell division. Distinct ecDNA sequences, herein termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells. However, how multiple ecDNA species within a tumor cell are assorted and maintained across somatic cell generations to drive cancer cell evolution is not known. Here we show that cooperative ecDNA species can be coordinately inherited through mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs encoding distinct oncogenes co-occur and are correlated in copy number in human cancer cells. EcDNA species are coordinately segregated asymmetrically during mitosis, resulting in daughter cells with simultaneous copy number gains in multiple ecDNA species prior to any selection. Computational modeling reveals the quantitative principles of ecDNA co-segregation and co-selection, predicting their observed distributions in cancer cells. Finally, we show that coordinated inheritance of ecDNAs enables co-amplification of specialized ecDNAs containing only enhancer elements and guides therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated inheritance of ecDNAs confers stability to oncogene cooperation and novel gene regulatory circuits, allowing winning combinations of epigenetic states to be transmitted across cell generations.

3.
Nat Genet ; 54(10): 1527-1533, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36123406

RESUMO

Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumor growth, drug resistance and shorter survival. Currently, the impact of nonchromosomal oncogene inheritance-random identity by descent-is poorly understood. Also unclear is the impact of ecDNA on somatic variation and selection. Here integrating theoretical models of random segregation, unbiased image analysis, CRISPR-based ecDNA tagging with live-cell imaging and CRISPR-C, we demonstrate that random ecDNA inheritance results in extensive intratumoral ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted treatment. Observed ecDNAs benefit host cell survival or growth and can change within a single cell cycle. ecDNA inheritance can predict, a priori, some of the aggressive features of ecDNA-containing cancers. These properties are facilitated by the ability of ecDNA to rapidly adapt genomes in a way that is not possible through chromosomal oncogene amplification. These results show how the nonchromosomal random inheritance pattern of ecDNA contributes to poor outcomes for patients with cancer.


Assuntos
Neoplasias , Oncogenes , Evolução Biológica , DNA , Herança Extracromossômica , Humanos , Neoplasias/genética , Neoplasias/patologia
4.
Immunity ; 55(9): 1732-1746.e5, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961317

RESUMO

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , RNA Mensageiro/genética , Síndrome , Vacinação , Proteínas do Envelope Viral
5.
Mol Med ; 28(1): 20, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135470

RESUMO

Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .


Assuntos
Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Hospedeiro Imunocomprometido/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , Vacinação/métodos , Vacinação/estatística & dados numéricos , Adulto Jovem
7.
Mucosal Immunol ; 15(3): 389-397, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743182

RESUMO

Memory T cells are fundamental to maintain immune surveillance of the human body. During the past decade, it has become apparent that non-recirculating resident memory T cells (TRMs) form a first line memory response in tissues to tackle re-infections. The fact that TRMs are essential for local immunity highlights the therapeutic potential of targeting this population against tumors and infections. However, similar to other immune subsets, TRMs are heterogenous and may form distinct effector populations with unique functions at diverse tissue sites. Further insight into the mechanisms of how TRM function and respond to pathogens and malignancies at different mucosal sites will help to shape future vaccine and immunotherapeutic approaches. Here, we review the current understanding of TRM function and biology at four major mucosal sites: gastrointestinal tract, lung, head and neck, as well as female reproductive tract. We also summarize our current knowledge of how TRM targets invading pathogens and developing tumor cells at these mucosal sites and contemplate how TRMs may be exploited to protect from infections and cancer.


Assuntos
Memória Imunológica , Neoplasias , Feminino , Humanos , Vigilância Imunológica , Células T de Memória , Mucosa , Neoplasias/terapia
8.
Nature ; 600(7890): 731-736, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819668

RESUMO

Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.


Assuntos
Neoplasias , Proteínas Nucleares , Azepinas/farmacologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Oncogenes/genética , Fatores de Transcrição/genética
9.
Sci Immunol ; 6(64): eabk0894, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34519539

RESUMO

Cross-reactive CD4+ T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2­reactive CD8+ T cells. However, large numbers of memory CD8+ T cells reside in tissues, feasibly harboring localized SARS-CoV-2­specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019). We found that SARS-CoV-2­specific memory CD4+ T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2­specific memory CD8+ T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2­specific memory CD8+ T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus­specific memory CD8+ T cells, but were functionally less potent than other virus-specific memory CD8+ T cell responses. The presence of preexisting tissue-resident memory CD8+ T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.


Assuntos
Tonsila Faríngea/imunologia , Linfócitos T CD8-Positivos/imunologia , SARS-CoV-2/imunologia , Tonsila Faríngea/citologia , Adulto , Idoso , Pré-Escolar , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade
11.
Nat Commun ; 11(1): 4374, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873787

RESUMO

Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA's structure is a first step in deciphering the mechanisms of its genesis and the fCNA's subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA's generative mechanism, AR enables a more thorough understanding of the origins of fCNAs.


Assuntos
Amplificação de Genes , Genômica/métodos , Neoplasias/genética , Oncogenes/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico/métodos , Análise Citogenética , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
12.
Sci Immunol ; 5(48)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591409

RESUMO

Liver resident-memory CD8+ T cells (TRM cells) can kill liver-stage Plasmodium-infected cells and prevent malaria, but simple vaccines for generating this important immune population are lacking. Here, we report the development of a fully synthetic self-adjuvanting glycolipid-peptide conjugate vaccine designed to efficiently induce liver TRM cells. Upon cleavage in vivo, the glycolipid-peptide conjugate vaccine releases an MHC I-restricted peptide epitope (to stimulate Plasmodium-specific CD8+ T cells) and an adjuvant component, the NKT cell agonist α-galactosylceramide (α-GalCer). A single dose of this vaccine in mice induced substantial numbers of intrahepatic malaria-specific CD8+ T cells expressing canonical markers of liver TRM cells (CD69, CXCR6, and CD101), and these cells could be further increased in number upon vaccine boosting. We show that modifications to the peptide, such as addition of proteasomal-cleavage sequences or epitope-flanking sequences, or the use of alternative conjugation methods to link the peptide to the glycolipid improved liver TRM cell generation and led to the development of a vaccine able to induce sterile protection in C57BL/6 mice against Plasmodium berghei sporozoite challenge after a single dose. Furthermore, this vaccine induced endogenous liver TRM cells that were long-lived (half-life of ~425 days) and were able to maintain >90% sterile protection to day 200. Our findings describe an ideal synthetic vaccine platform for generating large numbers of liver TRM cells for effective control of liver-stage malaria and, potentially, a variety of other hepatotropic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glicolipídeos/imunologia , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Fígado/patologia , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
13.
J Anim Sci ; 97(1): 192-207, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30428048

RESUMO

During the peripartum period, dairy cows often have signs of inflammation. Various stresses, including infectious and metabolic diseases, have been discussed as causative for this inflammation. In this study, expression profiles for 17 immune markers were measured in whole blood preparations from 78 dairy cows over a time frame starting 1 wk before calving to 4 wk after calving. Additionally, the effects of far-off and close-up feeding on immune function of dairy cows during the peripartum period were investigated. Cows were assigned to 1 of 2 feeding levels in late lactation to achieve a low and high BCS at the time of dry-off (approximately 4.25 and 5.0 on a 10-point scale). Following dry-off, both herds were managed to achieve a BCS of 5.0 one month before calving; this involved controlled feeding (i.e., maintenance) and over-feeding of ME during the far-off dry period. Within each far-off feeding-level treatment, cows were offered 65, 90, or 120% of their precalving ME requirements for 3 wk precalving in a 2 × 3 factorial arrangement. Analysis of gene expression profiles from blood cells revealed effects of time indicating that the transition cow's immune system counteracts the peripartum inflammation, whereas later postcalving it becomes activated to provide protection against postpartum infections. Far-off feeding affected (P < 0.05) the expression of 2 of the investigated genes at calving. Interleukin-6 (IL-6) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in unstimulated, peripheral leukocytes were lower (P < 0.05) in animals from the Far-Off_Over-fed group compared with the Far-Off_Control-fed group. Close-up feeding had several effects on gene expression, indicating that immune function in Feed120 animals was distinct from the Feed90 and Feed65. In conclusion, feeding management precalving becomes an important intervention to ensure immunocompetence at and after calving.


Assuntos
Bovinos/fisiologia , Ingestão de Alimentos , Ingestão de Energia , Inflamação/veterinária , Transcriptoma , Animais , Bovinos/genética , Bovinos/imunologia , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/genética , Imunocompetência , Interleucina-6/genética , Lactação , Período Periparto , Período Pós-Parto
14.
Oncotarget ; 7(13): 17087-102, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26934555

RESUMO

N-of-1 trials target actionable mutations, yet such approaches do not test genomically-informed therapies in patient tumor models prior to patient treatment. To address this, we developed patient-derived xenograft (PDX) models from fine needle aspiration (FNA) biopsies (FNA-PDX) obtained from primary pancreatic ductal adenocarcinoma (PDAC) at the time of diagnosis. Here, we characterize PDX models established from one primary and two metastatic sites of one patient. We identified an activating KRAS G12R mutation among other mutations in these models. In explant cells derived from these PDX tumor models with a KRAS G12R mutation, treatment with inhibitors of CDKs (including CDK9) reduced phosphorylation of a marker of CDK9 activity (phospho-RNAPII CTD Ser2/5) and reduced viability/growth of explant cells derived from PDAC PDX models. Similarly, a CDK inhibitor reduced phospho-RNAPII CTD Ser2/5, increased apoptosis, and inhibited tumor growth in FNA-PDX and patient-matched metastatic-PDX models. In summary, PDX models can be constructed from FNA biopsies of PDAC which in turn can enable genomic characterization and identification of potential therapies.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Biópsia por Agulha Fina , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA